Construction of Completely Integrable Systems by Poisson Mappings
نویسندگان
چکیده
Pulling back sets of functions in involution by Poisson mappings and adding Casimir functions during the process allows to construct completely integrable systems. Some examples are investigated in detail.
منابع مشابه
Integrable Discretizations of Some Cases of the Rigid Body Dynamics
A heavy top with a fixed point and a rigid body in an ideal fluid are important examples of Hamiltonian systems on a dual to the semidirect product Lie algebra e(n) = so(n)⋉Rn. We give a Lagrangian derivation of the corresponding equations of motion, and introduce discrete time analogs of two integrable cases of these systems: the Lagrange top and the Clebsch case, respectively. The constructio...
متن کاملLiouville canonical form for compatible nonlocal Poisson brackets of hydrodynamic type, and integrable hierarchies
In the present paper, we solve the problem of reducing to the simplest and convenient for our purposes, “canonical” form for an arbitrary pair of compatible nonlocal Poisson brackets of hydrodynamic type generated by metrics of constant Riemannian curvature (compatible Mokhov–Ferapontov brackets [1]) in order to get an effective construction of the integrable hierarchies related to all these co...
متن کاملBäcklund Transformations for Finite-dimensional Integrable Systems: a Geometric Approach
We present a geometric construction of Bäcklund transformations and discretizations for a large class of algebraic completely integrable systems. To be more precise, we construct families of Bäcklund transformations, which are naturally parametrized by the points on the spectral curve(s) of the system. The key idea is that a point on the curve determines, through the Abel-Jacobi map, a vector o...
متن کاملConstruction of strict Lyapunov function for nonlinear parameterised perturbed systems
In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.
متن کاملVolume Preserving Multidimensional Integrable Systems and Nambu–Poisson Geometry
In this paper we study generalized classes of volume preserving multidimensional integrable systems via Nambu–Poisson mechanics. These integrable systems belong to the same class of dispersionless KP type equation. Hence they bear a close resemblance to the self dual Einstein equation. All these dispersionless KP and dToda type equations can be studied via twistor geometry, by using the method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999